Non Sibi High School

Andover's Chem 300: Accelerated/Honors Chemistry

Chapter 16, Review Quiz 1

1

Determine all oxidation numbers in:

a. As^{3-} b. F_2 c. HO_2^{-} d. IO_4^{-} e. KH

$\mathbf{2}$

Determine all oxidation numbers, identify the reducing agent and oxidizing agent, and balance the following equation that occurs in aqueous acidic solution using the smallest possible whole-number coefficients:

$$\mathrm{UO}^{2+} + \mathrm{MnO}_4^- \longrightarrow \mathrm{UO}_2^{2+} + \mathrm{MnO}_2$$

3

Rank the solid alkali metals K, Li, and Na from weakest to strongest reducing agent under standard conditions. Justify your answer using a table of standard reduction potentials.

$\mathbf{4}$

Rank the aqueous cations Ag^+ , Al^{3+} , and Cd^{2+} from weakest to strongest oxidizing agent under standard conditions. Justify your answer using a table of standard reduction potentials.

For each spontaneous reaction below, calculate $E_{\rm cell}^\circ$ and then balance the equation.

- a. chlorine gas + aqueous potassium bromide
- b. solid aluminum metal + aqueous hydrochloric acid
- c. solid gold metal + aqueous nitric acid
- d. solid zinc metal + aqueous cadmium(II) nitrate

6

A galvanic cell was constructed using a strip of nickel metal and a strip of aluminum metal, a 1 M solution of NiSO₄ and a 1 M solution of Al(NO₃)₃, and an aqueous solution of NaNO₃ in the salt bridge. For the spontaneous reaction that occurred, calculate E_{cell}° and ΔG° , then balance the equation. Also sketch the galvanic cell.

7

Calculate the minimum voltage required to bring about the reaction $Cr^{3+}(aq) + Ag(s) \longrightarrow Cr(s) + Ag^{+}(aq)$ by electrolysis under standard conditions, then balance the equation.

8

For the electrolysis of molten NaI, write the half-reaction that occurs at the anode and the half-reaction that occurs at the cathode, then balance the equation.

9

For the electrolysis of molten NaI, if the electrolysis proceeds for 2.65 days using a current of 3.75 A, how many kilograms of I_2 will be produced?

10

For the electrolysis of molten KCl, using a current of 0.285 A, how many hours must the electrolysis proceed to produce 888 mL of Cl_2 gas, measured at 28°C and 724 torr?

$\mathbf{5}$

 $\frac{\mbox{Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License}}{\mbox{Contact: kcardozo@andover.edu}}$