Non Sibi High School

Andover's Chem 550/580: Advanced Chemistry

Chapter 18, Review Quiz 1

1

Calculate the molar solubility of lead(II) bromide ($K_{sp} = 4.0 \times 10^{-5}$). Include the solubility equilibrium reaction and K_{sp} expression in your answer.

$\mathbf{2}$

The molar solubility of scandium(III) fluoride is 1.9×10^{-5} M. Calculate the value of K_{sp} for scandium(III) fluoride. Include the solubility equilibrium reaction and K_{sp} expression in your answer.

3

Predict if precipitation will occur when 14 mL of 6.5×10^{-5} M AgNO₃ is mixed with 56 mL of 3.5×10^{-4} M K₃PO₄. (K_{sp} = 8.9×10^{-17} for Ag₃PO₄)

$\mathbf{4}$

A metal hydroxide with the formula $M(OH)_2$ was mixed with water and stirred until a saturated solution was created. The pH of the solution was found to be 9.88. Calculate the value of K_{sp} for the metal hydroxide.

$\mathbf{5}$

Calculate the molar solubility of lead(II) bromide ($K_{sp} = 4.0 \times 10^{-5}$) in 0.25 M Pb(NO₃)₂. Include the solubility equilibrium reaction and K_{sp} expression in your answer.

An aqueous solution of $\rm Pb(NO_3)_2$ is added dropwise to an aqueous mixture containing 0.010 M Br^ and 0.95 M I^ .

a. Calculate the minimum molarity of Pb²⁺ that must be reached to initiate precipitation of Br⁻ (K_{sp} = 4.0×10^{-5} for PbBr₂) and the minimum molarity of Pb²⁺ that must be reached to initiate precipitation of I⁻ (K_{sp} = 8.5×10^{-9} for PbI₂). Which precipitates first, Br⁻ or I⁻?

b. At the point when the second ion from the original mixture begins to precipitate, what percentage of the first ions initial molarity still remains unprecipitated in the solution? Can the Br^- and I^- mixture be effectively separated by fractional precipitation?

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License</u> <u>Contact: kcardozo@andover.edu</u>

6