
Non Sibi High School

Andover's Chem 550/580: Advanced Chemistry

Chapter 19, Review Quiz 1 Answers

1

Sketch a completely-labeled reaction energy profile (reaction progress diagram) for an exothermic reaction. Indicate any effects a catalyst would have the sketch.

----- = effect of catalyst (lowers transition state and E_a , no change in reactants/products and ΔH) The following mechanism has been proposed for a reaction:

Step 1: $NO_2 + NO_2 \longrightarrow NO_3 + NO$

Step 2: $NO_3 + CO \longrightarrow NO_2 + CO_2$

Identify the intermediate and write the overall balanced equation for the reaction.

 NO_3 is formed in the first step but then consumed in the second step, so NO_3 is the intermediate that cancels out of the overall balanced equation $NO_2 + CO \longrightarrow NO + CO_2$.

3

 $\mathbf{2}$

If the rate of formation of hydrogen gas in the reaction $4PH_3(g) \longrightarrow 6H_2(g) + P_4(g)$ is found to be 0.0066 M·s⁻¹, what is the rate of disappearance of PH₃ gas?

$$0.0066 \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1} \left(\frac{4 \text{ mol} \text{PH}_3}{6 \text{ mol} \text{H}_2}\right) = 0.0044 \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$$

rate of disappearance of $PH_3 = 0.0044 \,\mathrm{M \cdot s^{-1}}$

4

For the reaction $\frac{1}{2}Cl_2(g)+NO(g)\longrightarrow NOCl(g),$ the following data were collected:

Experiment	$[Cl_2](M)$	[NO](M)	Initial Rate $(M \cdot min^{-1})$
1	0.12	0.12	0.0025
2	0.24	0.12	0.0050
3	0.48	0.48	0.16

Determine the overall order of the reaction, write the rate law, and calculate the value of **k** with units.

$$\begin{split} \mathrm{rate} &= \mathrm{k}[\mathrm{Cl}_2]^{\mathrm{x}}[\mathrm{NO}]^{\mathrm{y}} \\ \mathrm{rate}_1 &= \mathrm{k}(0.12\,\mathrm{M})^{\mathrm{x}}(0.12\,\mathrm{M})^{\mathrm{y}} = 0.0025\,\mathrm{M}\cdot\mathrm{min}^{-1} \\ \mathrm{rate}_2 &= \mathrm{k}(0.24\,\mathrm{M})^{\mathrm{x}}(0.12\,\mathrm{M})^{\mathrm{y}} = 0.0050\,\mathrm{M}\cdot\mathrm{min}^{-1} \\ \mathrm{rate}_3 &= \mathrm{k}(0.48\,\mathrm{M})^{\mathrm{x}}(0.48\,\mathrm{M})^{\mathrm{y}} = 0.16\,\mathrm{M}\cdot\mathrm{min}^{-1} \\ \frac{\mathrm{rate}_2}{\mathrm{rate}_1} &= \frac{\mathrm{k}(0.24\,\mathrm{M})^{\mathrm{x}}(0.12\,\mathrm{M})^{\mathrm{y}}}{\mathrm{k}(0.12\,\mathrm{M})^{\mathrm{y}}} = \frac{0.0050\,\mathrm{M}\cdot\mathrm{min}^{-1}}{0.0025\,\mathrm{M}\cdot\mathrm{min}^{-1}} \end{split}$$

$$\begin{split} 2^{x} &= 2 \\ x &= 1 \\ \frac{\text{rate}_{3}}{\text{rate}_{2}} &= \frac{\text{k}(0.48\,\text{M})^{1}(0.48\,\text{M})^{y}}{\text{k}(0.24\,\text{M})^{1}(0.12\,\text{M})^{y}} = \frac{0.16\,\text{M}\cdot\text{min}^{-1}}{0.0050\,\text{M}\cdot\text{min}^{-1}} \\ & (2)(4)^{y} &= 32 \\ y &= 2 \\ \text{overall order} &= 1+2=3 \\ \text{rate} &= \text{k}[\text{Cl}_{2}]^{1}[\text{NO}]^{2} \\ \text{k} &= \frac{0.0050\,\text{M}\cdot\text{min}^{-1}}{(0.24\,\text{M})^{1}(0.12\,\text{M})^{2}} = 1.4\,\text{M}^{-2}\cdot\text{min}^{-1} \end{split}$$

$\mathbf{5}$

Concentration versus time data were collected for the reaction $2N_2O_5(g) \longrightarrow O_2(g) + 4NO_2(g)$. Graphs of $[N_2O_5]_t$ v. t, $\ln[N_2O_5]_t$ v. t, and $1/[N_2O_5]_t$ v. t were plotted, and the data points on the graph of $\ln[N_2O_5]_t$ v. t were found to fit a straight line most closely. Is the reaction zero-order, first-order, or second-order?

Since the data points on the graph of $\ln[N_2O_5]_t$ v. t had the best straight line fit, the reaction is first-order.

6

For the reaction 2ICl + H_2 \longrightarrow I_2 + 2HCl, consider the following proposed mechanism:

$$\begin{split} \mathrm{ICl} & + \mathrm{H_2} \xrightarrow{\mathbf{k}_1} \mathrm{HI} + \mathrm{HCl} \quad (\mathrm{slow}) \\ & \mathrm{ICl} + \mathrm{HI} \xrightarrow{\mathbf{k}_2} \mathrm{I_2} + \mathrm{HCl} \quad (\mathrm{fast}) \end{split}$$

Deduce a rate law for the overall reaction that is consistent with the proposed mechanism above.

 $\mathrm{overall\,rate} = \mathrm{rate\,of\,slow\,step} = k_1 [\mathrm{ICl}]^1 [\mathrm{H_2}]^1$

For the reaction $H_2 + I_2 \longrightarrow 2HI$, consider the following proposed mechanism:

$$\begin{split} &I_2 \xrightarrow[k_1]{k_{-1}} 2\,I \quad (fast) \\ &2I + H_2 \xrightarrow[k_2]{k_2} 2HI \quad (slow) \end{split}$$

Deduce a rate law for the overall reaction that is consistent with the proposed mechanism above.

$$\operatorname{Step} 1$$
: forward rate = reverse rate

$$\begin{split} k_1[I_2] &= k_{-1}[I]^2 \\ [I]^2 &= \frac{k_1}{k_{-1}}[I_2] \end{split}$$

overall rate = rate of slow step = $k_2[I]^2[H_2] = \frac{k_2k_1}{k_{-1}}[I_2][H_2]$

8

The activation energy for a reaction is 92 kJ/mol. If $k = 3.3 \times 10^{-5} s^{-1}$ at 75°C for the reaction, calculate k for the reaction at 35°C.

$$\ln \frac{k_2}{3.3 \times 10^{-5} \,\mathrm{s}^{-1}} = \frac{9.2 \times 10^4 \,\mathrm{J/mol} \cdot \mathrm{K}}{8.31 \,\mathrm{J/mol} \cdot \mathrm{K}} \left(\frac{1}{348 \,\mathrm{K}} - \frac{1}{308 \,\mathrm{K}}\right)$$
$$k_2 = 5.3 \times 10^{-7} \,\mathrm{s}^{-1} \,\mathrm{at} \,35^{\circ}\mathrm{C}$$

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License Contact: kcardozo@andover.edu